Propagation in Rectangular Waveguide Containing
Inhomogeneous, Anisotropic Dielectric

D. A. HOLMES

Summary—The Wentzel, Kramers and Brillouin (WKB) ap-
proximation is used to solve the wave equations for propagation of
guided waves in rectangular waveguide containing an inhomogeneous
dielectric. The simplest form of anisotropy is used to charactertize the
relative dielectric constant, i.e., it is assumed that the relative per-
mittivity tensor is diagonalized with respect to the waveguide co-
ordinants. Each of the elements of the relative permittivity tensor is
allowed to vary continuously across the broad dimension of the wave-
guide. The TE,,, and TM,.,, cases are analyzed for the instance of
completely filled guide, while the TE,, modes are considered for
slab-loaded guide.

]. INTRODUCTION

HE WKB APPROXIMATION! for solving the
TSChroedinger equation has been shown to be use-

ful for solving electromagnetic wave equations.>™®
The purpose of this work is to present a WKB analysis
of wave propagation in rectangular waveguide contain-
ing an inhomogeneous, anisotropic dielectric. Losses in
the dielectric may be included by allowing the elements
of the relative permittivity tensor to become complex.

The rectangular waveguide is assumed to be of width
a and height b, where 6 =a. In the coordinant system
used, x measures distance across the broad dimension
of the guide, y measures distance across the short di-
mension and z measures distance parallel to the axis of
the guide. It is assumed that the relative permittivity
tensor has only diagonal elements which are given by
K.(x), K,(x) and K, (x), functions of x only.

In Section II, the transcendental equation for the
propagation constant and the WKB solutions for the
electric and magnetic field components are given for
TE.«-mode propagation in wholly filled waveguide.
TM,..-mode propagation in wholly filled guide is con-
sidered in Section I11. In Section IV, TE,¢-mode propa-
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gation is considered for inhomogeneously filled wave-
guide. Relatively simple expressions for the propagation
constants result for the special case of a symmetric
slab. In the Appendix, the WKB solution for a gen-
eralized wave equation is discussed. It is to be noted
that the functions ¥(x), a(x) and 8(x), which are used
in the Appendix, are given different definitions in Sec-
tions II, 11T and IV.

In all cases, the time variation of the field components
is assumed to be given by exp (jwt) while the z de-
pendence is given by exp (—I'z), where w is the angular
frequency and T is the propagation constant.

1I. TE,.. MopeE ProracaTioN IN WHOLLY
FiLLeEp GuiDpE

For this case a wave equation for H, may be found,
the other field components then being given by

—-T oH,

H, = . ) (1a)
T+ kK, (x) 9
—-T oH,

Hy, = ) ’ (1b)
T2+ k2?K,(x) av
—7 oH,

E, = A (1¢)
T2 4 kK. (x) dy

and

/ 0H,

B, = —T" : (1d)

T+ kK, (x) o

where uo is the permeability of vacuum, €, is the per-
mittivity of vacuum and k= w’uceo.

Considering now (20a) in the Appendix, ¥(x) is the
x variation of H, and

1
T ®
I + k'K,
g(x) = w

T2 + k2K (x)

-[1‘2 + ke K.(x) — (ﬁ;ﬁ)] 3)

i) = [ s )

and
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The complete set of TE,,, field solutions is then given by
_ Hcos (mry/b) cos f(x)
VB(x)a(x)
" - +HT Ci(?’}ﬂl’y/b) v/ B(x) sin f(x) , (5b)
Va(@) (I + koK, (x))
-+ HIma sin (mwy/b) cos f(x)
Hy = — : (5¢)
bvB(R)a(x) (T + ke*K.(x))
B JwpoHmz sin (mry/b) cos f(x)

bvVB(x)a(x) (I + k" K(x))

(5a)

and

—jwuoH cos (my/b)\/B(x) sin f(x)

= [— b

V(@) (I + koK, (x))

(Se)

»
oy

where 1 is merely a multiplicative constant and # is an
integer.

The TE,. propagation constants are determined
from

f“ {I‘2 + ko*K, (%)
0 I2 + koQKI(JC)
mar\2T) 172
‘[P2 + koQKx(x) - <-b—> :|} dx = Hm, (6)
where » is ¢ nonzero integer.

I1I. TM,,. MoDE PROPAGATION IN WHOLLY
FILLED WAVEGUIDE

In (20a) ¢(x) is the x variation of [, and

o) = ——D )
2+ k2K (%)

B(x) = K, (x) . T2+ k2K, (%)

K, (x) T?4 ke?K,(x)
[K ) (0 () — (”) } ®)

y(t) b
and

i@ = [ Bl (9)

The complete set of field solutions is

_ Esin (may/b) sin f(x)

(10a)
VB(x)a(x)
JdE,
B ox
E=—
T2 4 kotK.(x)
_ —EI\/@ sin (mwy/b) cos f(x) ) (10b)

Valx) (T'? 4 kK .(x))
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oF,
d
E,=—
24 22K, (x)
—I'Emax cos (mmy/b) sin f(x)
= — ’ (10C)
b/ B(x)a(x) (T + koK (1))
aF,
JweKy(x) ——
_ 9
D AR ()
_ JwesK (%) Emar cos (ﬁwy/b? sin f(x) (10d)
bv/B(x)a(x)(I* + ko*K (1))
and
ar,
x
H, =
I'? + kK (x)
—jwesk (%) EN/B(x) sin (may/b) cos f(x)
= S -(10e)

Va(x) (I + kK, (x))
The TM.,,. propagation constant is determined from

f K, (%) T2+ k2K, (x) [K( x)
o VKL() T2 kK, () LK)

m 2 1/2
— <T> :l} dx = nw. (11)

IV. TE,.; Mope ProracaTioN 1N SLAB LoapeEDp GUIDE

(I? + k" Ky (a))

It is now considered that a dielectric slab occupies
the region from x; to x, while the rest of the waveguide
is filled with air. The air-filled region from 0 to x, is
termed I, the dielectric-filled region {rom x; to x, is
termed Il and the air-filled region {rom x, to a is de-
noted by III. In this section, only the TE modes with no
y variation shall be considered; thus the only field com-
ponents are E,, H, and H,. For this case, ¥(x) is the x
variation of £, when a(x) =1 and

BH(x) = I'* + ko*K,(¥) (12)
and
fo w0 = [ “sar (13)
The appropriate solutions are

Esin (px) in 1, (14a)

)\/ﬂ( x) | B sin [f(x, x0)]
+ Csin [f(x, 1) — f(v, a)]} in II, (14b)
|D sin [p(a — #)] in III, (14¢)

where p?=1?+%k and E, B, C and D are constants.
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By forcing E, and 0E,/0x to be continuous at the
boundaries x=x; and x=ux, the following system of
equations is obtained:

E+/B(x1) sin (px1) — C sin [f(ws, x)] = 0,
Ep cos (prr) — v/B(wr) { B — C cos [f(as, x1)]} =0,
D/B(xs) sin [p(a — x3)] — Bsin [f(x2, 41)] = 0,
Dp cos [p(a — w2)] + v/B(x)
A B cos [f(x2, x1)] — C} = 0. (15)
Setting the determinant of (15) equal to zero, a trans-

cendental equation for the propagation constant I' is
obtained,

B(x1)B(xs) tan [f(xe, 1)] tan (pay) tan [p(a — x)]
— p2tan [f(x2, x1)| = pB8(xy) tan (pur)

— pB(x2) tan [pla — a2)] = 0. (16)

Eq. (16) can be greatly simplified for a centered, sym-
metric slab. For this case, let xy=a—x;=d and §(x)
=B(a—x) for x1Sx=x,. It then follows that tan
[f(x2, x1) | =tan [2f(a/2, d)]. Using the relation

2 tan [f(a/2, d)]
1 — tan? [f(a/2, d)]
in (16), one obtains, after factoring,

8(d) tan (pd) tan [f(a/2, d)] — p = O

tan [2/(a/2, d)] =

(17)
and

8(d) tan (pd) + p tan [f(a/2, d)] = 0. (18)

For arbitrary xi, x; and B(x), the constants B, C and
D can be found in terms of E from (15). For the cen-
tered, symmetric slab the solutions of (17) and (18) can
be shown to correspond to symmetrical and asym-
metrical modes, respectively. In general

E~/B(x1) sin (px1)
C = ]
sin [f(xs, x1)]
5 E sin (pxy)

/BG) 1 pcot (px)) + B(w) cot [f(xs, 41)]}

and
_ E sin (px1) sin [f(xe, x1)]
V/B(x)B(es) sin [pa — x5)]
-{p cot (pxr) + B(x1) cot [f(xz, x)]} .

The equation for D for the centered, symmetric slab
reduces to

D= E sin [2f(a/2, d)]
8(d)
-{p cot (pd) + B(d) cot [27(a/2,D)]} .

(19)
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By substituting (17) into (19) one finds that D= E; by
substituting (18) into (19) one finds that D= —E.
Therefore, the propagation constants found from (17)
are those for which E, is symmetric with respect to the
x=a/2 plane. The asvmmetric modes result from the
solutions of (18).

V. DiscussioN aAND CONCLUSION

WKB techniques have been shown to be useful for
analytically studying the propagation characteristics of
infinite rectangular waveguide filled with an aniso-
tropic material. The off-diagonal elements of the rela-
tive permittivity tensor have been set equal to zero
while the diagonal elements have been considered to be
slowly varying {unctions of distance across the broad
dimension of the waveguide. The complete sets of field
solutions and the eigenvalue equations for the propaga-
tion constants have been determined for both TE,.
and TM,,, mode propagation.

For waveguide loaded with an inhomogeneous,
anisotropic slab, the TE,; modes have been considered.
The transcendental equation for the propagation con-
stants for a centered, symmetrical slab was factored into
two equations corresponding to the symmetrical and
asymmetrical modes.

Dr. Richmond has numerically shown the validity of
the WKB approximation for electromagnetic problems
in his earlier works,?? therefore no numerical work has
been presented herein. The introduction of numerical
work would necessitate assumptions concerning the
exact functional behavior of the dielectric constant
tensor elements.

APPENDIX

Consider the wave equation

1 9 W (x) ,
(e =)+ w0, @0
a(x) dx dx
where ¥(x) is the x variation of some field component
and a(x) and B(x) are slowly varying functions of x.
By substituting

Y(x) = Yo exp {ij()c)}

into (20a), choosing a series expansion for S(x) of the
form
2, Sa®)

S = 2,

n=1 w

’
n

and then following the technique outlined in Schiff,! the
resulting approximate solution for ¥(x) is

b exp {ij | ”mx)dx}
VBl

Y(x) = (20b)
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Eq. (20b) can alternatively be written as

W

V/B(x) ()

When differentiating the solutions (20b) and (20c¢), it is
conventional’ to consider that the denominator varies
much more slowly than the numerator so that

Y(x) = (20¢)

+4 B(x) ex [ x xl
iy VG {i] | ptyas}
v O]

(20d)

71.. M. Brekhovskikh, “Waves in Layered Media,” Academic
Press, Inc., New York, N. Y., p. 196; 1960.
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The solutions (20b) and (20c¢) are valid only when
a(x) and B(x) satisly the condition

651(2
dx
()
¢ dx
1 48(x) 1 da(x)
_ B(x) dx alx)  dx <1, (200)
26(x)

All of the solutions given in Sections 11, II1T and IV must
satisfy condition (20e).

Thin-Film Waveguide Bolometers for
Multimode Power Measurement

B. M. SCHIFFMAN, MEMBER, IEEE, L.. YOUNG, SENIOR MEMBER, IEEE, AND
R. B. LARRICK, ASSOCIATE MEMBER, IEEE

Summary—Thin-film bolometers have been developed for meas-
uring the total (unwanted) power that could be transmitted in any or
all possible modes and at many frequencies above the normal operat-
ing band.

The bolometer is a thin metal film which is placed so that it in-
tercepts all the power flowing down the waveguide. When the power
in the fundamental frequency is filtered out and only power at higher
frequencies remains in the waveguide containing the bolometer,
then it can be used to measure the total spurious power emitted by a
high-power transmitter above its fundamental frequency band.
Measurements have been made up to 15 Ge in S-band waveguide.

A variety of materials and shapes were tested and the bolometers
were shown to be capable of measuring equally well several different
modes and frequencies separately and in combination.

I. INTRODUCTION
ﬁ- FIRST STEP in reducing RFI emission from a

microwave transmitter is the accurate deter-

mination of the total power in all the undesired
frequency components traveling in the waveguide trans-
mission line. A power meter that operates over an ex-
tremely broad band and maintains uniform sensitivity
for all modes that might exist within the measurement
band would be a very useful RFI monitoring device.

Manuscript received July 11, 1963; revised September 27, 1963.
This work was supported by the U. S. Air Force through the Rome
Air Development Center, Griffiss AFB, N. Y., under Contract No.
AF 30(602)-2734.

1The authors are with Stanford Research Institute, Menlo Park,
Calif,

This conclusion was reached after examining the facts
and arguing from them as follows.

A harmonic sampler [1] had been designed earlier at
Stanford Research Institute, and further developed at
Airborne Instruments Laboratory, Deer Park, N. Y.
[2]. Such a device has been used to measure the spectral
output of a high-power source from the second to the
sixth harmonic [3]. This versatile instrument is a rela-
tively complicated device. It was felt that a simpler
instrument, which would measure only the fotal spurious
output from a high-power source (without giving the
spectral distribution), would be a most useful adjunct
to a high-power system when it is required to minimize
the spurious-frequency output. This conclusion was
based partly on the following measured result [3]: In the
process of adjusting the electrode voltages of a high-
power klystron, it was found that minimizing the second
harmonic tended to minimize all the other harmonics
also. It will of course require more measurements to de-
termine whether this result ordinarily holds. In the
meantime, however, it is suggested that a measurement
of the single quantity, the toral spurious power (without
regard to spectral distribution), may enable one to set
the control voltages to minimize any particular RFT.
(Furthermore it might also indicate the approximate
power level at any particular frequency, if the spectral
distribution is known beforehand.) The reader should



