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Summary—The Wentzel, Kramers and Brillouin (WKB) ap-

proximation is used to solve the wave equations for propagation of
guided waves in rectangular waveguide containing an inhomogeneous
tlelectric. The simplest form of anisotropy is used to characterize the
relative dielectric constant, i.e., it is assumed that the relative per-

mittivity tensor is diagonalized with respect to the waveguide co-

ordlnants. Each of the elements of the relative permittivity tensor is

allowed to vary continuously across the broad dimension of the wave-

guide. The TE.~ and TM.~ cases are analyzed for the instance of
completely filled guide, while the TE,,. modes are considered for

slab-loaded guide.

I. INTRODL-CTION

T

HE WKB APPROXIMATION’ for solving the

.%hroedinger equation has been shown to be use-

ful for solving electromagnetic wave equations.z-fi

The purpose of this work is to present a WKB analysis

of wave propagation in rectangular waveguide contain-

ing an inhomogeneous, anisotropic dielectric. Losses in

the dielectric may be included by allowing the elements

of the relative permittivity tensor to become complex.

The rectangular waveguide is assumed to be of width

a and height b, where b Sa. In the coordinant system

used, x measures distance across the broad dimension

of the guide, y measures distance across the short di-

mension and z measures distance parallel to the axis of

the guide. It is assumed that the relative perrnittivity

tensor has only diagonal elements which are given by

K.(x), Ku(x) and K.(x), functions of x only.

In Section II, the transcendental equation for the

propagation constant and the WKB solutions for the

electric and magnetic field components are given for

TEn~-mode propagation in wholly filled waveguide.

TiVIn~-mode propagation in wholly filled guide is con-

sidered in Section III. In Section IV, TE. o-mode propa-
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gation is considered for inhomogeneously filled wave-

guide. Relatively simple expressions for the propagation

constants result for the special case of a symmetric

slab. In the Appendix, the WKB solution for a gen-

eralized wave equation is discussed. It is to be noted

that the functions ~(x), a(x) and (3(x), which are used

in the Appendix, are given different definitions in Sec-

tions II, III and IV.

In all cases, the time variation of the field components

is assumed to be given by exp (jwt) while the z de-

pendence is given by exp ( –1’z), where u is the angular

frequency and r is the propagation constant.

II. TE.. lbl ODE PROPAGATION IN WHOLLY

FILLED GLTIDE

For this case a wave equation for Hz may be found,

the other field components then being given by

(la)

(lb)

(lC)

(Id)

where MO is the permeability of vacuum, COis the per-

mittivity of vacuum and k; =coz,ao~o.

Considering now (20a) in the Appendix, ~(.x) is the

x variation of Hz and

(2)

[ ( )1r’ + ko’~.(.t) – ~ (3)

(4)

152



Holmes: Propagation in Waveguide Containing Inhomogeneous Dielectric

The complete set of TE.~ field solutions is then given by

H Cos (m7ry/b) Cosf(z)
Hz=—

tif?(”u)a(x) ‘
(.%)

~ = ~Hr cos (nnry/6)/p(x) sinj’(x)
.

<a(~) (r’ + kO’KU(X)) —‘
(5b)

13 = ~ HFmr sin (m~y,/b) cosf(x)
u

——— (5C)
b~p(.t)a(x) (r’ + ko’K.(”t)) ‘

and

–jw.@ cos (m~y/b) <P(x) sin f(b)
liu=—

ti~(~) (r’ + kO’Ku(~))
, (5e)

where H is merely a multiplicative constant and m is an

integer.

The TE.. propagation constants are determined

from
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– I’Emr cos (wz~y/b) sin j(x)
——

b<~(.~)a(~)(r’ + ko2Ku(.~)) ‘
(1OC)

and

dE,
–juq,li-.(.v) ~

H. = —————
r’ + kO’Kz(:t)

–j~&J(x)E<f?(x) sin (m~y/b) cos~(:v)

{a(l) (r’ + k02Kz(t))
––-–– . (lOe)

G r’+ kO’KU(X)

s{
.— The ThI ~~ propag-ation constant is determined from

o r’+ kO’K.(.~)

[

a K,(.T) r’+ ko2Kt(x) KZ(.Y)

( )1}
m7r2 1/2 J~

[. p + ,$O’k”.(.t)– ~ d.v= HT, (6) o &&j “~ + ko2Ku(.r) “ KV(I) ‘r’+ ‘a’K’(t))

where n is a nonzero integer.
(-)11

‘m7r 2 1/!
— dx = nn-.

b
(11)

III. TM.~ lVIODE PROPAGATION IN \VHOLLY

FILLED WAVEGLTIDE
IV. TEno hIODE PROPAGATION IN SL.4B LOADED GUIDE

In (20a) ~(x) is the x variation of E, and
It is now considered that a dielectric slab occupies

the region from xl to Xz while the rest of the wave~uide

K,(x)
a(x) = —

I“ + ko2Kz(x) ‘

and

f(x) == J ‘p(+k
o

The complete set of field solutions is

~ _ E sin (mry/b) sin f(fi)
.2

<p(.x)a(.r) ‘

(7)
is filled with air. The air-filled region from O to xl is

termed 1, the dielectric-filled region frolm xl to X2 is

termed I I and the air-filled region from x.> to a is de-

noted by I II. In this section, only the TE modes with no

y variation shall be considered; thus the only field com-

(-)1
tn7r 2 ponents are E,, Hz and H,. For this case, 1~(.x) is the x

(8) variation of E, when a(x)= 1 and
b

oq.v) = r’ + k02KJ.r) (12)

ancl

(9)

s
f(-~, *1) == ‘p(t)d.v. (13)

z,

The appropriate solutions are

(lea)
(E sin (P.v) in 1, (14a)

–r~’
ox

JY. =—
1’2 + k02KJx)

– EI’<B(x) sin (m~y/b) cosf(x)
ID sin [p(a – z)] in III, (14C)

—
<a(t) (1’2 + k,2KJ(.x)) – ‘

(lob)
where Pt= I’+ko2 and E, B, C and D are constants.
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By forcing E. and dEJdx to be continuous at the

boundaries x = xl and x = x2, the following system of

equations is obtained:

E<@(#J sin (PXJ – C sin [~(x2, XI)] = ~,
—.

E~ COS (@c,) – w@(x,) {B – C COS [f(~,, x,)]} = O,
——

ll<~(xt) sin [fl(a – xJl – B sin [~(.xz, XI)] = O,

Dp COS [~(a – $2)] + ti~(~?)

. {B cos [f(%,, XI)] - C} = O. (15)

Setting the determinant of (1.5) equal to zero, a trans-

cendental equation for the propagation constant 17 is

obtained,

p(xl)~(x,) tan [/(.x,, xl)] tan (pxJ tan [p(a – xJ]

— p’ tan [j(xz, xJJ – @(xJ tan (@J

– pl?(x,) tan [p(a – 3,)] = O. (16)

Eq. (16) can be greatly simplified for a centered, sym-

metric slab. For this case, let xl= a –W = d and ~(x)

=(3(a-x) for xl~xsx,. It then follows that tan

[f(%, xl)]= tan [2j’(a/2, d) ]. Using the relation

2 tan [/(a,/2, d)]
tan [2~(a/2, d)] =

1 – tan’ [~(a/2, d)]

in (16), one obtains, after factoring,

~(d) tan (pal) tan [~(a/2, d)] – p = O (17)

and

B(d) tan (pal) + p tan [~(a/2, d)] = O. (18)

For arbitrary xl, x, and @(x), the constants B, C and

D can be found in terms of E from (15). For the cen-

tered, symmetric slab the solutions of (17) and (18) can

be shown to correspond to symmetrical and asym-

metrical modes, respectively. In general

E<@(xJ sin (~.tJ
c=

sin [~(xz, xl)] – ‘

B= E :&’) {p cot (jw) + B(x,) cot [f(x,, xl)]}

and

D = E sin (P.Y1) sin ljf(z?, XI)]

v’B(xJD(xJ sin [P(a – X2)]

. {p cot (p%)+ 6(11) cot [f(% m)] }.

The equation for D for the centered, symmetric slab

reduces to

E sin [2j(a/2, d)]
D=

,8(d)

. [ p cot (@’) + ~(d) cot [2f(a/2, d)]}. (19)

By substituting (17) into (19) one finds that D = E; b}-

substituting (1S) into (19) one finds that D = —E.

Therefore, the propagation constants found from (17)

are those for which Eu is symmetric with respect to the

x = a,’2 plane. The asymmetric modes result from the

solutions of (18).

V. DISCUSSION AND CONCLUSION

WKB techniques have been shown to be useful for

analytically studying the propagation characteristics of

infinite rectangular waveguide filled with an aniso-

tropic material. The off-diagonal elements of the rela-

tive permittivity tensor have been set equal to zero

while the diagonal elements have been considered to be

slowly varying functions of distance across the broad

dimension of the waveguide. The complete sets of field

solutions and the eigenvalue equations for the propaga-

tion constants have been determined for both TE.~

and TM ,,~ mode propagation.

For waveguide loaded with an inhomogeneous,

anisotropic slab, the TE. O modes have been considered.

The transcendental equation for the propagation con-

stants for a centered, symmetrical slab was factored into

two equations corresponding to the symmetrical and

asymmetrical modes.

Dr. Richmond has numerically shown the validity of

the WKB approximation for electromagnetic problems

in his earlier works,2,3 therefore no numerical work has

been presented herein. The introduction of numerical

work would necessitate assumptions concerning the

exact functional behavior of the dielectric constant

tensor elements.

APPENDIX

Consider the wave equation

&“:(a(’)%2)+”2(’)+(‘20a)
where ~(x) is the x variation of some field component

and a(x) and f?(x) are slowly varying functions of x.

By substituting

into (20a), choosing a series expansion for S(x) of the

form

m s.($)
s(f) =~y,

.’=1

and then following the technique outlined in Schiff,l the

resulting approximate solution for +(x) is
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Eq. (20b) can alternatively be written as

(20C)

When differentiating the solutions (20b) and (20c), it is

conventional to consider that the denominator varies

much more slowly than the numerator so that

7 L. hl. Brekhovskikh, ‘ ‘PYaves in Layered illedia, ” Academic
Press, Inc., New York, N. Y., p. 196; 1960.

The solutions (20b) and (20c) are valid only when

a(x) and ~(x) satisfy the condition

1 d~(z) 1 da(x)
—— —— +— ——

~(.t) dx a(x) d.t

2~(.v)
— <<1. (20e)

All of the solutions given in Sections II, III and IV must

satisfy condition (20e).

Thin-Film Waveguide Bolometers for

Multimode Power Measurement

B. M. SCHIFFMAN, MEMBER, IEEE, L. YOUNG, SENIOR MEMBER, IEEE, AND

R. B. LARRICK, .\ssocI.4TE MEMBER, IEEE

Surnrnar~-Thhr-film bolometers have been developed for meas-

uring the total (unwanted) power that could be transmitted in any or

all possible modes and at many frequencies above the normal operat-

ing band.

The bolometer is a thin metal film which is placed so that it in-

tercepts all the power flowing down the waveguide. When the power

in the fundamental frequency is filtered out and only power at higher

frequencies remains in the waveguide containing the bolometer,

then it can be used to measure the total spurious power emitted by a

high-power transmitter above its fundamental frequency band.
Measurements have been made up to 15 Gc in S-band waveguide.

A variety of materials and shapes were tested and the bolometers

were shown to be capable of measuring equally well several different

modes and frequencies separately and in combination.

I. INTRODUCTION

A

FIRST STEP in reducing RFI emission from a

microwave transmitter is the accurate deter-

mination of the total power in all the undesired

frequency components traveling in the waveguide trans-

mission line. A power meter that operates over an ex-

tremely broad band and maintains uniform sensitivity

for all modes that might exist within the measurement

band would be a very useful RF I monitoring device.

Manuscript received July 11, 1963; revised September 27, 1963.
This work was supported by the U. S. Air Force through the Rome
Air Development Center, Griffiss AFB, N. Y., under Contract No.
AF 30 (602)-2734.

The authors are with Stanford Research Institute, iUenlo Park,
Calif.

This conclusion was reached after examining the facts

and arguing from them as follows.

A harmonic sampler [1] had been designed earlier at

Stanford Research Institute, and further (developed at

Airborne Instruments Laboratory, Deer Park, N. Y.

[2]. Such a device has been used to measure the spectral

output of a high-power source frolm the second to the

sixth harmonic [3]. This versatile instrument is a rela-

tively complicated device. It was felt that a simpler

instrument, which would measure only the total spurious

output from a high-power source (without giving the

spectral distribution), would be a most useful adjunct

to a high-power system when it is required to minimize

the spurious-frequency output. This conclusion was

based partly on the following measured resu lt [3]: In the

process of adjusting the electrode voltages of a high-

power klystron, it was found that minimizing the second

harmonic tended to minimize all the other harmonics

also. It will of course require more measurements to de-

termine whether this result ordinarily holds. In the

meantime, however, it is suggested that a measurement

of the single quantity, the total spurious $>OWW (without

regard to spectral distribution), may enalb,le one to set

the control voltages to minimize any particular RF].

(Furthermore it might also indicate the approximate

power level at any particular frequency, if the spectral

distribution is known beforehand.) The reader should


